Product Description

Product Description

 

Product Name 1/8″ 1/4″NPT In-line Pipe Thread Plastic Disconnect Fluid Quick Connect Shut Off Threaded Couplings
Technology Injection Molding
Usage Standard flow quick-disconnect couplings require a body and an insert in the same flow size. Plug insert into body to connect fitting and easily disconnect the fitting by simply press the thumb latch.
Application medical devices, laboratory, life science, biopharmaceutical, biochemical analysis, bioengineering, circulating water cooling pipe system, water treatment and disinfection, food&beverage, packaging machinery, industrial and hundreds of other applications;
Adapted Medium Gas/Liquid
Material  POM Plastic
Seal Ring Material Buna-N/FKM/EPDM/Silicone rubber, depend on your usage
Valve Spring 316 Stainless Steel 
Temperature Range  32°F – 180°F (0°C – 82°C)
Pressure Range Vacuum to 100 psi, 6.9bar
Valve Option Valved(shut off) or Non-valved (straight through)
Shape Option Panel Mount/In-line/Elbow/NPT Threaded;
Hose Barb Size 1/16″ =1.6mm (01); 1/8″= 3.2mm (02); 3/16″= 4.8mm (03); 

1/4″=6.4mm  (04); 5/16″=8mm (05); 3/8″=9.6mm  (06);

Threaded End 1/8″-27NPT, 1/4″-18NPT Male Thread

1/4″ Flow rate, 1/4″(6.4mm), 5/16″(7.9mm), 3/8″(9.5mm) Hose Barb Coupling Insert

 

Related Products You May Like

1/4″ Flow Rate All Plastic Series Couplings

1/8″ Flow Rate Medium Series Couplings

1/16″ Flow Rate Small Series Couplings

 

FAQ

 

Q1: Are you trading company or manufacturer?
A1: We are 15 years factory. Welcome to visit our factory.
 
Q2:What is your sample policy?
A2:
1. Only for terminal  manufacturer;
2. Please kindly provide detail  information of company for sample application process. Sample is available after confirmed and approved by management;
3.The international freight cost should be paid by the applicant;
 
Q3:What is your terms of payment?
A3: 100% payment before delivery; T/T 50% as deposit when mass customization, the balance before shipment.
 
Q4: How about your delivery time?
A4: Generally, it will take about 7-15 days after payment confirmed. The specific delivery time depends on the items and the ordered quantity .
 
Q5:What’s the shipping way?
A5: Usually by DHL, UPS, TNT, FedEx express or as your request.
 
Q6: Can you produce according to the samples?
A6: Yes, we can produce by your samples or technical drawings. We accept ODM & OEM.

 

Packaging & Shipping

 

Company Profile

Our company has specialized in researchs and developments, designs, manufactures, promotes and sales of a variety of plastic fittings, plastic connectors,quick disconnect couplings, check valves, filters, CHINAMFG pumps, solenoid valves,plastic tubings and other accessories applied in fluid systems. Our products are widely used in all kinds of products, machinery,devices and process of liquid and gas pipe system, In the life sciences and special industrial markets have thousands of applications to be used, Such as blood pressure, blood oxygen monitoring module and blood gas recovery equipment, biochemical analysis/inspection equipment, dialysis water treatment equipment, treatment and reuse equipment, breathing anesthesia, incubator, bioengineering and circulating water cooling pipe system,  solvent printer, inkjet printer,film printer and ink supply system, water quality online analytical instruments, laboratory equipment, food machinery, fermentation system process equipment, plating equipment, PCB&LCD process equipment, chemical equipment, packaging machinery, water treatment and disinfection equipment, inflatable products, automation equipment…And so on.
Depending on the 15-years experience in various fluidic control systems, our company has had a set of comprehensive manufacturing systems involving in R&D and design, mold manufacture, plastic injection, assembly & inspection, finished-product sales and warehousing logistics. It has many advantages of stable quality, efficient production and punctual delivery, which can be said a trustworthy partner.
Following different requirements from wider customers, including drawings or samples offering, our company can offer satisfied design services and mass customized services.
We’re looking forwards to cooperating with a wide range of OEMs and ODMs.

  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

fluid coupling

Contribution of Fluid Coupling to the Longevity of Connected Equipment

A fluid coupling plays a crucial role in enhancing the longevity and protecting the connected equipment by providing the following benefits:

  • Shock Load Damping: When the equipment starts or stops, there can be sudden changes in torque, resulting in shock loads. The fluid coupling absorbs and dampens these shock loads, reducing stress and wear on the connected equipment.
  • Torsional Vibration Damping: Torsional vibrations can occur during the operation of the connected equipment, which can be damaging over time. The fluid coupling acts as a torsional damper, reducing these vibrations and preventing potential fatigue failure in the equipment.
  • Overload Protection: In case of sudden overloads or jamming of the connected equipment, the fluid coupling can slip and decouple the load, protecting both the equipment and the driving motor from excessive stress and damage.
  • Smooth Startup: During startup, the fluid coupling allows a gradual increase in torque, enabling a smooth and controlled acceleration of the connected equipment. This eliminates sudden jerks and reduces mechanical stress during the startup phase.
  • Load Distribution: The fluid coupling distributes the load evenly across the connected equipment, minimizing wear and tear on specific components and extending the overall lifespan of the machinery.
  • Reduced Maintenance: By reducing shock loads and vibrations, the fluid coupling helps decrease the frequency of maintenance and repairs required for the connected equipment, resulting in cost savings and improved uptime.
  • Energy Efficiency: The fluid coupling allows for efficient power transmission by reducing losses during startup and load changes. This, in turn, helps in lowering the overall energy consumption of the system and contributes to equipment longevity.
  • Contamination Prevention: The fluid coupling encapsulates the driving and driven components, providing a barrier that helps prevent contaminants such as dust, dirt, and moisture from entering the equipment’s internal components. This protection can extend the life of bearings and other sensitive parts.

Overall, a fluid coupling acts as a protective intermediary between the driving motor and the connected equipment, enhancing the system’s reliability, efficiency, and longevity by mitigating the effects of shocks, vibrations, and overloads.

fluid coupling

Role of Fluid Coupling in Torque Multiplication and Power Transfer

A fluid coupling is a mechanical device used to transmit power between two shafts without direct physical contact. It operates on the principles of fluid dynamics and hydrokinetics to enable torque multiplication and efficient power transfer. Here’s how a fluid coupling achieves these functions:

  • Hydrodynamic Torque Converter: A fluid coupling is essentially a hydrodynamic torque converter. When the input shaft (driving shaft) rotates, it sets the transmission fluid inside the coupling in motion. The fluid experiences centrifugal forces, creating a high-velocity zone near the outer circumference and a low-velocity zone near the center. This velocity difference generates torque in the fluid coupling, allowing power to be transmitted from the input shaft to the output shaft (driven shaft).
  • Torque Multiplication: One of the primary advantages of a fluid coupling is its ability to provide torque multiplication. During startup or when the load on the driven shaft is initially low, the fluid coupling slips to some extent, which allows the input shaft to rotate at a higher speed than the output shaft. This speed difference results in torque multiplication, enabling the fluid coupling to handle higher loads during acceleration or heavy starting conditions.
  • Power Transfer Efficiency: Fluid couplings offer high power transfer efficiency due to the hydrodynamic nature of their operation. The smooth and continuous transmission of power through the fluid medium minimizes energy losses and mechanical wear, leading to more efficient power transmission compared to mechanical clutches or direct-coupling methods.
  • Load Adaptability: Fluid couplings automatically adjust their slip to adapt to changing load conditions. When the load on the output shaft increases, the fluid coupling slips more, allowing the output shaft to slow down slightly and match the load demand. This load adaptability ensures smooth and stable power transfer even under varying operating conditions.

Fluid couplings are commonly used in applications where torque multiplication and smooth power transfer are essential. They find widespread use in heavy machinery, mining equipment, conveyors, crushers, marine propulsion systems, and many other industrial applications. By efficiently transferring power while providing torque multiplication, fluid couplings help optimize the performance and longevity of power transmission systems.

Proper selection of the fluid coupling based on the application’s torque and power requirements is crucial to ensure optimal torque multiplication and power transfer. Additionally, regular maintenance and monitoring of the fluid coupling’s condition are essential to maintain its efficiency and reliability over time.

fluid coupling

Fluid Couplings and Energy Efficiency in Power Transmission

Fluid couplings play a significant role in improving energy efficiency in power transmission systems. They achieve this by enabling smooth and efficient torque transmission while reducing energy losses during various operating conditions.

One of the key factors contributing to the energy efficiency of fluid couplings is their hydrodynamic principle of operation. When power is transmitted through a fluid coupling, it operates on the principle of hydrodynamic power transmission. The primary component, known as the impeller, rotates and imparts motion to the fluid inside the coupling. This motion creates a hydrodynamic force that transmits the torque to the output side.

During the initial startup or when there is a significant speed difference between the input and output shafts, the fluid coupling allows the input shaft to accelerate gradually. This feature, known as the soft start, reduces the mechanical stress on the connected components and the power source. By avoiding sudden acceleration, fluid couplings minimize the energy spikes that occur during direct starts in systems without couplings.

Moreover, fluid couplings act as a torque limiter when the load exceeds a certain threshold. This characteristic, known as the slip, allows the fluid coupling to disengage slightly when the torque reaches a predetermined level. As a result, it protects the system from overloads and reduces energy wastage during high-stress conditions.

Additionally, fluid couplings help mitigate the impact of shock loads and torsional vibrations, which can reduce wear and tear on mechanical components. By minimizing vibrations and shock loads, fluid couplings contribute to longer equipment life and, consequently, lower maintenance and replacement costs.

However, it’s important to note that like any mechanical component, fluid couplings have some energy losses due to viscous drag and heat dissipation. While modern fluid couplings are designed with improved efficiency, these losses need to be considered when assessing the overall energy efficiency of a power transmission system.

In summary, fluid couplings enhance energy efficiency in power transmission by providing soft starts, torque limiting, and damping of vibrations, thus reducing energy wastage and extending the life of the connected equipment.

China Hot selling 1/8China Hot selling 1/8
editor by CX 2024-04-24