Product Description

Factory Selling Irrigation Female Threaded Coupling for the Conveyance of Fluids at High Pressures
 

Product Description

IRRIPLAST PP compression fittings line has been designed for the conveyance of fluids at high pressures, for water conveyance, for potable water distribution and applications in the thermo-hydraulic sector. This product line is accordance with the most severe international standards in terms of mechanical properties and alimentary compatibilities.

Part

Material

Body(A)

Heterophasic block polypropylene co-polymer(PP-B) of exceptional mechanical properties even at high temperature.

Blocking bush(D)

Polypropylene

Nut(B)

Polypropylene with dye master of high stability to UV rays andsolidity to heat( S grade according to standard DIN54004)

Clinching ring(C)

Polyacetal resin(POM)with high mechanical resistance And hardness

O Ring gasket(E)

Special elastomeric acrylonitrile rubber(EPDM) for alimentary use

Description Code SIZE Weight (g/pc) pcs/ carton
Female thread coupling A1003 20*1/2 31 600
20*3/4 32 560
20*1 37 460
25*1/2 47 375
25*3/4 49 360
25*1 53 330
32*1/2 76 240
32*3/4 77 220
32*1 79 210
32*11/4″ 86 192
40*1 109 192
40*11/4 112 130
40*11/2″ 125 120
50*1″ 185 80
50*11/4 193 80
50*11/2″ 200 80
50*2″ 206 80
63*11/4 294 48
63*11/2 304 48
63*2 305 42
75*2″ 481 27
75*21/2″ 496 24
75*3″ 560 24
90*21/2″ 720 14
90*3″ 775 14
90*4″ 848 14
110*3″ 1254 8
110*4″ 1264 8

 

FEATURES

1. Light weight, easy to load and unload
2. Good chemicals and drugs resistance
3. Small resistance to fluidity
4. Strong mechanical strength
5. Good electrical insulation
6. Water quality unaffected
7. Simple installation

APPLICATION

1. Structure Engineering
2. Water supply system
3. for Agriculture Irrigation

 

Main Products

View more products,you can click products keywords…

PPR Pipe PPR Fitting
PP Union Ball Valve PP Compression Fitting
Clamp Saddle Solenoid Valve

Sprinkler

PVC Ball Valves

Company Profile

OTHER DETAIL SERVICES FOR YOU
1.Any inquiries will be replied within 24 hours.
2.Professional manufacturer.
3.OEM is available.
4.High quality, standard designs,reasonable&competitive price,fast lead time.
5.Faster delivery: Sample will be prepared in 2-3 days.
6.Shipping: We have strong cooperation with DHL,TNT,UPS,MSK,China Shipping,etc.

FAQ

1.What is your MOQ?
Our MOQ is usually 5 CTNS for size from 20-50mm.

2.What is your delievery time?
The time of delievery is around 30-45days.

3.What is your payment terms?
We accept 30% T/T in advance,70% before shipment .or 100% L/C.

4.What is the shipping port?
We ship the goods to HangZhou or ZheJiang port.

5.What is the address of your company?
Our company is located in the HangZhou, HangZhou ZHangZhoug Province,China.You are welcomed to visit our factory.

6.How about the samples?
we could send you the samples for free, and you need to pay the courier fee.
If there are too much samples, then you also need to undertake the sample fee.

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

fluid coupling

Factors to Consider when Choosing between a Fluid Coupling and a VFD (Variable Frequency Drive)

When selecting between a fluid coupling and a VFD for a power transmission application, several factors should be taken into account:

  • Speed Control Requirements: Consider whether variable speed control is essential for your application. VFDs are excellent for applications that require precise and flexible speed control, while fluid couplings typically offer limited speed control capabilities.
  • Energy Efficiency: Evaluate the energy efficiency requirements of your system. VFDs can offer higher energy efficiency by allowing the motor to run at optimal speeds, whereas fluid couplings introduce some energy losses due to slip.
  • Starting Torque: Examine the starting torque requirements of the driven load. Fluid couplings can provide high starting torque and smooth acceleration, which may be advantageous for applications with high inertia loads.
  • Overload Protection: Consider the need for overload protection. Fluid couplings inherently provide some protection against shock loads by allowing slip, while VFDs may require additional protective mechanisms.
  • Maintenance and Service: Evaluate the maintenance and service requirements of both systems. Fluid couplings are generally simpler and require less maintenance compared to VFDs, which involve electronic components.
  • Cost: Compare the initial and long-term costs of both options. VFDs often have higher upfront costs but can provide significant energy savings in the long run, while fluid couplings may have lower initial costs but could lead to higher energy consumption.

Ultimately, the choice between a fluid coupling and a VFD depends on the specific needs of your application. Each option has its advantages and limitations, and a thorough analysis of the operating conditions and performance requirements will help determine the most suitable solution for your system.

fluid coupling

Real-World Case Studies: Improved Performance with Fluid Couplings

Fluid couplings have been widely adopted in various industries, and numerous real-world case studies demonstrate their positive impact on performance and efficiency. Here are a few examples:

Case Study 1: Mining Conveyor System

In a large mining operation, a conveyor system used to transport heavy loads of ore experienced frequent starts and stops due to fluctuating material supply. The abrupt starting and stopping led to significant wear and tear on the conveyor components, causing frequent breakdowns and maintenance downtime.

After installing fluid couplings at critical points in the conveyor system, the soft start and stop capability of the fluid couplings significantly reduced the mechanical stress during operation. This led to a smoother material flow, reduced conveyor wear, and extended equipment life. Additionally, the fluid couplings’ overload protection feature prevented damage to the conveyor during peak loads, ensuring uninterrupted production.

Case Study 2: Marine Propulsion System

In a marine vessel equipped with traditional direct drive systems, the crew faced challenges in maneuvering the ship efficiently. The fixed propeller arrangement made it challenging to control the vessel’s speed and direction accurately, leading to increased fuel consumption and decreased maneuverability.

By retrofitting the vessel’s propulsion system with fluid couplings, the ship’s performance improved significantly. The fluid couplings allowed for flexible and smooth speed control, enabling precise maneuvering and reduced fuel consumption. The ability to adjust the load on the propeller enhanced the vessel’s overall efficiency, resulting in reduced operating costs and improved environmental sustainability.

Case Study 3: Industrial Pumping Station

In an industrial pumping station, the constant starting and stopping of the pumps caused water hammer and pressure surges within the pipeline network. The sudden hydraulic shocks led to pipe bursts, valve failures, and increased energy consumption.

After implementing fluid couplings in the pump drive systems, the pumps could be softly started and stopped. The fluid couplings’ torque control capabilities ensured a gradual increase in pump speed, eliminating water hammer and pressure surges. As a result, the pumping station’s reliability improved, maintenance costs decreased, and the energy consumption reduced due to smoother pump operations.

These case studies demonstrate the positive effects of using fluid couplings in various applications. They highlight how fluid couplings contribute to improved performance, reduced mechanical stress, enhanced control, and cost savings in industrial machinery and systems.

“`fluid coupling

Fluid Couplings and Variable Speed Control

Fluid couplings are well-suited for certain applications that require variable speed control. While fluid couplings are primarily designed for smooth power transmission and torque multiplication, they can be used in combination with other devices to achieve variable speed control.

The primary method of achieving variable speed control with a fluid coupling is by using a hydraulic coupling or a hydraulic torque converter. A hydraulic coupling is essentially a fluid coupling with an additional chamber that allows for controlled fluid flow. By adjusting the fluid flow rate, the output speed can be varied, thus providing variable speed control.

Hydraulic torque converters are similar to fluid couplings but have an additional component called a stator. The stator redirects the fluid flow in a way that enhances torque multiplication at low speeds and improves efficiency at high speeds. By altering the stator’s position, the output speed can be varied, enabling variable speed control.

Variable speed control with fluid couplings is often used in applications such as industrial machinery, mining equipment, and certain types of vehicles. It allows for smooth and efficient speed adjustments without the need for mechanical gear changes, providing flexibility in various operating conditions.

However, it’s important to note that while fluid couplings can offer some degree of variable speed control, they are not as versatile as other speed control mechanisms like variable frequency drives (VFDs) or electronic controllers. Therefore, the selection of the appropriate speed control method depends on the specific requirements and characteristics of the application.

China Standard Factory Selling Irrigation Female Threaded Coupling for The Conveyance of Fluids at High Pressures  China Standard Factory Selling Irrigation Female Threaded Coupling for The Conveyance of Fluids at High Pressures
editor by CX 2024-04-10